SUSTAINABLE URBAN FUTURES: HOW AI CAN PREDICT AND SHAPE CITY EXPANSION

Authors

  • Vaishali Agrawal Research Scholar, Department of Earth Science, Banasthali Vidhyapith, Rajasthan

DOI:

https://doi.org/10.5281/zenodo.15698220

Keywords:

Machine Learning, Artificial Intelligence, Land Use Land Cover, Predictive Modelling, Predictive Analytics

Abstract

The swift expansion of urban populations and limited space has stimulated innovative and groundbreaking solutions for efficient city management and sustainability. AI-driven implementations have surfaced as robust tools for optimizing smart city operations, including environmental monitoring and infrastructure planning. These simulations harness machine learning, digital twins, IoT data, and geospatial analytics, predictive analytics for planning realistic urban models. This study explores the role of AI in forecasting city expansion, analyzing key machine learning models, geospatial analytics, and their integration into smart urban planning. This research paper aims to explore the use of machine learning models to predict urban expansion, population growth, and changes in land use to guide long-term urban planning strategies.

References

I. Grossi, Enzo & Buscema, Massimo. (2008). Introduction to artificial neural net-works. European journal of gastroenterology & hepatology. 19. 1046-54. 10.1097/MEG.0b013e3282f198a0.

II. Marwaha, S., Dey, D. H. S., & Brar, T. S. (2024). The emerging role of Artificial Intelligence (AI) in urban and regional planning in India. International Journal of Arts Architecture & Design, 2(2), 61–79. https://doi.org/10.62030/2024julypaper4

III. Kundu, D., & Pandey, A. K. (2020). World Urbanisation: Trends and Patterns (pp. 13–49). springer nature Singapore. https://doi.org/10.1007/978-981-15-3738-7_2

IV. Tuholske, C., Caylor, K., Evans, T., & Avery, R. (2019). Variability in urban pop-ulation distributions across Africa. Environmental Research Letters, 14(8), 085009. https://doi.org/10.1088/1748-9326/ab2432.

V. Van Oorschot, J., Slootweg, M., Remme, R. P., Sprecher, B., & Van Der Voet, E. (2024). Optimizing green and gray infrastructure planning for sustainable ur-ban development. Npj Urban Sustainability, 4(1). https://doi.org/10.1038/s42949-024-00178-5.

VI. Chaturvedi, V., & De Vries, W. T. (2021). Machine Learning Algorithms for Ur-ban Land Use Planning: A Review. Urban Science, 5(3), 68. https://doi.org/10.3390/urbansci5030068.

VII. Nagappan, S. D., & Daud, S. M. (2021). Machine Learning Predictors for Sus-tainable Urban Planning. International Journal of Advanced Computer Science and Applications, 12(7). https://doi.org/10.14569/ijacsa.2021.0120787

VIII. Alawadhi, M. (2019). Artificial intelligence-driven smart city initiatives in Dubai, UAE. International Journal of Advanced Computer Science and Applications, 10(8), 84-91. https://doi.org/10.14569/IJACSA.2019.0100811 Alonso, J., Ben-ner, M., & Breheny, M. (2021).

IX. Artificial intelligence in urban planning: Applications, methodologies, and chal-lenges. Cities, 118, Article 103383. https://doi.org/10.1016/j.cities.2021.103383 Batty, M., & Axhausen, K. W. (2020).

X. Artificial intelligence in urban and regional planning. Journal. of Regional Sci-ence. Advance online publication. https://doi.org/10.1111/jors.124314. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012).

XI. Smart cities of the future. European Physical Journal Special Topics, 214(1), 481-518. https://doi.org/10.1140/epjst/e2012-01703-y Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary liter-ature review. Sustainable Cities and Society, 31, 183-212. https://doi.org/10.1016/j.scs.2017.03.017.

XII. World Bank (2021). Artificial Intelligence in Smart Cities: Policy and Govern-ance Strategies.

• Available at: https://www.worldbank.org/en/topic/smartcities

• Explores how AI-driven analytics are shaping urban planning.

XIII. European Commission (2023). AI and Sustainable Urban Development: Guide-lines for Policymakers.

• Available at: https://ec.europa.eu/digital-strategy

• Outlines AI-driven strategies for sustainable urban growth.

XIV. U.S. Department of Transportation (2020). AI and Machine Learning in Smart Transportation Systems.

• Available at: https://www.transportation.gov

• Discusses the role of AI in optimizing urban mobility and infrastructure.

XV. McKinsey Global Institute (2018). Smart Cities: Digital Solutions for a More Livable Future.

• Available at: https://www.mckinsey.com

• Covers AI-driven urban planning initiatives in cities like Singapore and Amsterd.

XVI. Huang, H., Ye, C., & Gao, W. (2019). An intelligent data-driven model for dis-ease diagnosis based on machine learning theory. Journal of Combinatorial Op-timization, 42(4), 884–895. https://doi.org/10.1007/s10878-019-00495-x

XVII. -, D., -, D., -, P., -, H., & -, A. (2024). Enhancing Forensic Analysis of Digital Ev-idence Using Machine Learning: Techniques, Applications, and Challenges. In-ternational Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences. https://doi.org/10.37082/ijirmps.v12.i5.230988.

XVIII. World Urbanization Prospects: The 2018 Revision. (2019). un. https://doi.org/10.18356/b9e995fe-en.

XIX. https://www.turing.com/kb/all-you-have-to-know-about-predictive-modeling.

Additional Files

Published

01-06-2025

How to Cite

Vaishali Agrawal. (2025). SUSTAINABLE URBAN FUTURES: HOW AI CAN PREDICT AND SHAPE CITY EXPANSION. International Educational Journal of Science and Engineering, 8(6). https://doi.org/10.5281/zenodo.15698220