IPSCS FOR ENHANCING STEM CELL TRANSPLANTS

Authors

  • Klara Molnar-Tanaka Research Scholars Program, Harvard Student Agencies, In collaboration with Learn with Leaders

Keywords:

Stem Cell Transplants, Pluripotency, Patient-Specific, Epigenetic Memory, Mutations of Induced Pluripotent Stem Cells

Abstract

Induced pluripotent stem cells (iPSCs) have the potential to pave the way for personalized therapies in stem cell research. Their combination of abilities to differentiate into all three germ layers and circumvent the issue of graft rejection renders them a potential candidate for stem cell transplants. Research on iPSCs is relatively scarce and few studies get to the clinical trial stage. To encourage more studies on iPSCs, specifically regarding stem cell transplants, this article makes the comparison of iPSCs to adult stem cells and embryonic stem cells to highlight their superior attributes.

References

I. Algvere, P. V., Gouras, P., & Dafgård Kopp, E. (1999). Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. European Journal of Ophthalmology, 9(3), 217–230. https://doi.org/10.1177/112067219900900310

II. Borgia, F., Giuffrida, R., Caradonna, E., Vaccaro, M., Guarneri, F., & Cannavò, S. (2018). Early and late onset side effects of photodynamic therapy. Biomedicines, 6(1), 12. https://doi.org/10.3390/biomedicines6010012

III. Deinsberger, J., Reisinger, D., & Weber, B. (2020). Global trends in clinical trials involving pluripotent stem cells: A systematic multi-database analysis. Npj Regenerative Medicine, 5(1). https://doi.org/10.1038/s41536-020-00100-4

IV. Doss, M. X., & Sachinidis, A. (2019). Current challenges of IPSC-based disease modeling and therapeutic implications. Cells, 8(5), 403. https://doi.org/10.3390/cells8050403

V. Hong, J.-H., Kim, J.-H., Kang, K.-W., Lee, B.-H., Park, Y., & Kim, B.-S. (2022). Generation of a human induced pluripotent stem cell line kumi006 from a patient with multiple myeloma. Stem Cell Research, 61. https://doi.org/10.1016/j.scr.2022.102767

VI. Hu, S., Zhao, M.-T., Jahanbani, F., Shao, N.-Y., Lee, W. H., Chen, H., Snyder, M. P., & Wu, J. C. (2016). Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells. JCI Insight, 1(8). https://doi.org/10.1172/jci.insight.85558

VII. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., Mckinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., … Daley, G. Q. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290. https://doi.org/10.1038/nature09342

VIII. Kobold, S., Bultjer, N., Stacey, G., Mueller, S. C., Kurtz, A., & Mah, N. (2023). History and current status of clinical studies using human pluripotent stem cells. Stem Cell Reports, 18(8), 1592–1598. https://doi.org/10.1016/j.stemcr.2023.03.005

IX. Li, W., Zhao, X., Wan, H., Zhang, Y., Liu, L., Lv, Z., Wang, X.-J., Wang, L., & Zhou, Q. (2011). IPS cells generated without C-myc have active DLK1-dio3 region and are capable of producing full-term mice through tetraploid complementation. Nature News. https://www.nature.com/articles/cr201125

X. Liang, G., & Zhang, Y. (2012). Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective. Cell Research, 23(1), 49–69. https://doi.org/10.1038/cr.2012.175

XI. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., Terada, M., Nomiya, Y., Tanishima, S., Nakamura, M., Kamao, H., Sugita, S., Onishi, A., Ito, T., Fujita, K., … Takahashi, M. (2017). Autologous induced stem-cell–derived retinal cells for macular degeneration. New England Journal of Medicine, 376(11), 1038–1046. https://doi.org/10.1056/nejmoa1608368

XII. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., & Yamanaka, S. (2007). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106. https://doi.org/10.1038/nbt1374

XIII. National Research Council (US) and Institute of Medicine (US) Committee on the Biological and Biomedical Applications of Stem Cell Research. (2002). Adult stem cells - stem cells and the future of regenerative medicine ... National Library of Medecine. https://www.ncbi.nlm.nih.gov/books/NBK223693/

XIV. Ogura, A., Inoue, K., & Wakayama, T. (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539358/

XV. Ouyang, X., Liu, Y., Zhou, Y., Guo, J., Wei, T.-T., Liu, C., Lee, B., Chen, B., Zhang, A., Casey, K. M., Wang, L., Kooreman, N. G., Habtezion, A., Engleman, E. G., & Wu, J. C. (2021). Antitumor effects of IPSC-based cancer vaccine in pancreatic cancer. Stem Cell Reports, 16(6), 1468–1477. https://doi.org/10.1016/j.stemcr.2021.04.004

XVI. Parrotta, E., De Angelis, M. T., Scalise, S., Candeloro, P., Santamaria, G., Paonessa, M., Coluccio, M. L., Perozziello, G., De Vitis, S., Sgura, A., Coluzzi, E., Mollace, V., Di Fabrizio, E. M., & Cuda, G. (2017). Two sides of the same coin? unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy. Stem Cell Research & Therapy, 8(1). https://doi.org/10.1186/s13287-017-0720-1

XVII. Penack, O., Peczynski, C., Mohty, M., Yakoub-Agha, I., Styczynski, J., Montoto, S., Duarte, R. F., Kröger, N., Schoemans, H., Koenecke, C., Peric, Z., & Basak, G. W. (2020). How much has allogeneic stem cell transplant–related mortality improved since the 1980s? A retrospective analysis from the EBMT. Blood Advances, 4(24), 6283–6290. https://doi.org/10.1182/bloodadvances.2020003418

XVIII. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., Natesan, S., Wagers, A. J., Melnick, A., Evans, T., & Hochedlinger, K. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855. https://doi.org/10.1038/nbt.1667

XIX. Richard, J.-P., & Maragakis, N. J. (2015). Induced pluripotent stem cells from ALS patients for Disease Modeling. Brain Research, 1607, 15–25. https://doi.org/10.1016/j.brainres.2014.09.017

XX. Rizzi, R., Di Pasquale, E., Portararo, P., Papait, R., Cattaneo, P., Latronico, M. V., Altomare, C., Sala, L., Zaza, A., Hirsch, E., Naldini, L., Condorelli, G., & Bearzi, C. (2012). Post-natal cardiomyocytes can generate IPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death & Differentiation, 19(7), 1162–1174. https://doi.org/10.1038/cdd.2011.205

XXI. Rofagha, S., Bhisitkul, R. B., Boyer, D. S., Sadda, S. R., & Zhang, K. (2013). Seven-year outcomes in ranibizumab-treated patients in anchor, Marina, and Horizon. Ophthalmology, 120(11), 2292–2299. https://doi.org/10.1016/j.ophtha.2013.03.046

XXII. Scesa, G., Adami, R., & Bottai, D. (2021). IPSC preparation and epigenetic memory: Does the tissue origin matter? Cells, 10(6), 1470. https://doi.org/10.3390/cells10061470

XXIII. Si-Tayeb, K., Noto, F. K., Sepac, A., Sedlic, F., Bosnjak, Z. J., Lough, J. W., & Duncan, S. A. (2010). Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC developmental biology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923111/

XXIV. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., & Jaenisch, R. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977. https://doi.org/10.1016/j.cell.2009.02.013

XXV. Tsukasaki, K., Maeda, T., Arimura, K., Taguchi, J., Fukushima, T., Miyazaki, Y., Moriuchi, Y., Kuriyama, K., Yamada, Y., & Tomonaga, M. (1998). Poor outcome of autologous stem cell transplantation for adult T cell leukemia/lymphoma: A case report and review of the literature. Bone Marrow Transplantation, 23(1), 87–89. https://doi.org/10.1038/sj.bmt.1701533

XXVI. Zvereva, M. I., Shcherbakova, D. M., & Dontsova, O. A. (2010). Telomerase: Structure, functions, and Activity Regulation. Biochemistry (Moscow), 75(13), 1563–1583. https://doi.org/10.1134/s0006297910130055

Additional Files

Published

01-06-2024

How to Cite

Klara Molnar-Tanaka. (2024). IPSCS FOR ENHANCING STEM CELL TRANSPLANTS. International Educational Journal of Science and Engineering, 7(6). Retrieved from https://iejse.com/journals/index.php/iejse/article/view/110