
1. INTRODUCTION
Rural construction initiatives typically 
commence with high hopes—a community-
focused goal to establish a new school, health 
center, or community hall intended to serve future 
generations. However, these dreams often face 
challenging obstacles: limited funding, erratic 
weather conditions, and a shortage of skilled 
workers tend to lead to budget overruns and 
delays in timelines [2]. Often, local stakeholders 
discover budget deficits or schedule delays 
only after it is too late to implement corrective 
measures. In contrast to urban locations, which 
benefit from digital dashboards and integrated 
project management tools that offer almost real-
time insights, rural sites generally depend on 
paper-based completion logs and irregular cost 
entries [5][15]. In contrast to urban locations, 
which benefit from digital dashboards and 
integrated project management tools that offer 
almost real-time insights, rural sites generally 
depend on paper-based completion logs and 
irregular cost entries [8]. These discoveries 
highlight an important point: without optimisation 
of materials based on data linked to schedule and 
budget management, rural projects continue to be 
reactive instead of proactive.

Earned Value Management (EVM) was conceived 
in the aerospace and defence sectors to break this 

cycle of “late-breaking bad news” by unifying 
three core metrics—Planned Value (PV), the 
budgeted cost of scheduled work; Earned Value 
(EV), the budgeted cost of completed work; and 
Actual Cost (AC), the real expenditure incurred—
into a single performance framework [14]. From 
these values, Schedule Variance (SV = EV–PV) 
and Cost Variance (CV = EV–AC) provide early 
warnings, while the Schedule Performance Index 
(SPI = EV/PV) and Cost Performance Index (CPI 
= EV/AC) quantify efficiency [3][2]. Adaptations 
for construction—such as continuous EVM via 
singularity functions [13] and Monte Carlo–
derived tolerance bands [2]—have improved 
responsiveness, but their reliance on frequent, 
high-quality data updates has limited uptake in 
rural contexts [7]. Nevertheless, the traditional 
EVM framework—endorsed by IS 15883 (Part 
2):2013—remains foundational for data-driven 
decision-making when reporting is confined to 
discrete intervals [7].

In parallel, Machine Learning (ML) has 
begun to reshape forecasting within project 
controls. Long Short-Term Memory (LSTM) 
networks learn nonlinear “S-curve” patterns 
from historical EVM time series, yielding more 
accurate Estimates at Completion (EAC) than 
traditional CPI-based methods [6]. Kernel-
based multivariate regressions can predict 
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the dynamic “Longest Path” duration from aggregate EVM 
measures alone, removing the need for detailed activity-level 
drill-downs [16]. More recent work on data visualization in 
earnings management shows how interactive dashboards can 
translate complex metrics into intuitive scenario analyses 
[17], while explainable project-management ML uses SHAP 
values to highlight which activities drive forecast errors [15]. 
However, these breakthroughs have been demonstrated almost 
exclusively in data-rich, urban or industrial settings, whereas 
rural construction remains challenged by data sparsity and ad 
hoc record-keeping [20; 12].

Beyond forecasting project performance, the broader rural 
building literature highlights the importance of multi-objective 
trade-offs. Sensitivity analyses in retrofit studies show that 
incremental changes in insulation levels, glazing, or HVAC 
configurations can swing annual energy use by ± 30 % and 
significantly impact occupant comfort [18]. Taguchi-based 
experiments further reveal Pareto-optimal retrofit schemes that 
balance upfront investment costs (tracked by EVM) against 
long-term performance gains [19]. Integrating such uncertainty 
quantification and multi-objective optimization into rural 
project controls could enable teams to anticipate not only cost 
and schedule variances but also ensure that upfront expenditures 
deliver sustainable, comfortable buildings.

To address the twin gaps of limited rural EVM adaptation 
and the lack of guidance on ML applications for sparse 
EVM data, we propose a five-phase methodology. We begin 
by tailoring quarterly EVM computations to rural conditions 
using a Rs. 1,996,650 Bill of Quantities, then introduce simple 
regressors—Linear and second-degree Polynomial—trained on 
historical quarters to capture EV and AC dynamics. Next, we 
generate one-quarter-ahead forecasts of SV, CV, SPI, and CPI, 
followed by rigorous validation—quantifying RMSE, MAPE, 
and R2—through cross-validation and sensitivity analyses. 
Finally, we situate this framework within the broader rural 
development context—linking it to efficient material choices 
[8], uncertainty-aware performance bands [18], visualization-
driven decision support [17], sustainable-material innovations 
[9][1], landscape integration in remote regions [10][11], 
and community empowerment through energy and tourism 
initiatives [4][20]. By bringing together hard data from EVM, 
the foresight of simple ML models, and real-world trade-off 
insights, our approach gives rural builders a clear roadmap—so 
the community’s excitement for a new school or health centre 
can turn into a safe, on-schedule, on-budget, and genuinely 
comfortable reality.

2. RESEARCH METHODOLOGY
This methodology outlines a structured approach to integrate 
Earned Value Management (EVM) with Machine Learning 
(ML)—specifically Linear Regression and Polynomial 
Regression—to enable proactive, data-driven decision-making 
in rural building projects. The study is organised into phases 
such as Research Design, Data Collection & Preparation, EVM 
Computation, ML Model Development (Linear & Polynomial), 
and Evaluation & Validation.

2.1 Research Design
2.1.1 Research Objectives
•	 Quantify project performance in rural building initiatives 

using EVM metrics (PV, EV, AC, SV, CV, SPI, CPI) at 
quarterly intervals.

•	 Develop and compare Linear Regression and Polynomial 
Regression models to forecast future EVM parameters (EV 
and AC).

•	 Propose a data-driven framework that leverages EVM 
outputs and ML forecasts to guide timely corrective 
actions.

2.1.2 Research Hypotheses
•	 H1: Quarterly EVM metrics reliably reflect cost and 

schedule variances in rural construction projects.
•	 H2: Linear and Polynomial Regression models trained on 

historical EVM data can accurately predict future EV and 
AC, enabling early intervention.

•	 H3: Integrating EVM with ML forecasts results in more 
effective decision-making than EVM alone.

2.1.3 Research Type
This is an applied empirical study combining quantitative EVM 
calculations on real project data with supervised ML modelling 
(Regression). It follows a longitudinal case study approach 
over a 24 month rural school building project.

Fig. 1. Visual representation of the algorithm in the form 
of a flow chart

3. ASSUMED DATA SIMULATION AND EVM 
PARAMETER COMPUTATION   
3.1 Simulated Bill of Quantities (BoQ)
The simulated BOQ is structured to reflect a typical rural 
school building project: it itemizes all major work activities 
(earthwork, PCC, RCC, steel, brickwork, roofing, plastering, 
flooring, fittings, and painting) with plausible quantities and 
local unit rates, summing to a total budget (BAC) of Rs. 
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1,996,650. By assigning each item a specific unit, quantity, 
and rate, the BOQ provides a clear basis for estimating “earned 
value” (EV) and “actual cost” (AC) as percentages of BAC over 
eight quarterly intervals. In this way, the BOQ not only defines 
project scope and cost but also underpins the EVM calculations 
and subsequent regression based forecasting, ensuring that 
simulated progress and expenditures remain grounded in a 
realistic, itemised budget.

Item 
No.

Description Unit Quantity Rate 
(Rs.)

Amount 
(Rs.)

1 Earthwork & 
Site Clearance

m³ 300 200 60 000

2 PCC (1:4:8) in 
Foundation

m³ 10 4 500 45 000

3 RCC M20 for 
Footings & 
Plinth Beam

m³ 20 7 500 150 000

4 Steel 
Reinforcement 
(TMT Bars)

tonne 2 75 000 150 000

5 Brickwork in 
CM (1:6), 230 
mm thick

m³ 62.1 6 500 403 650

6 RCC Roof Slab 
M20, 125 mm 
thick

m³ 50 8 000 400 000

7 12 mm 
Plastering on 
Walls (both 
faces)

m² 540 150 81 000

8 Vitrified Tile 
Flooring, 
600×600 mm

m² 500 600 300 000

9 Doors (10 nos. 
× Rs. 15 000) 
& Windows (20 
nos. × Rs. 10 
000)

LS 1 — 350 000

10 Painting (2 
coats, walls)

m² 540 50 27 000

Total (BAC) 19 96 
650

Table 1. BoQ for all major work activities

BAC (Budget at Completion) = Rs. 19 96 650; 
Monthly PV = BAC ÷ 24 = Rs. 83 193.75
Quarterly PV = 3 × Rs. 83 193.75 = Rs. 2 49 581.25

Quarter 
(q)

EV% 
(Simulated)

AC% 
(Simulated)

1 12 % 14 %
2 22 % 28 %
3 35 % 42 %
4 50 % 60 %
5 65 % 80 %
6 80 % 100 %
7 90 % 115 %
8 100 % 120 %

Table 2. Simulated Earned Value & Actual Cost
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3.3 Historical EVM Computation (Quarters 1–5)
q PV (Rs.) EV (Rs.) AC (Rs.) SV (Rs.) CV (Rs.) SPI CPI
1 249 581.25 239 598.00 279 531.00 – 9 983.25 – 39 933.00 0.96 0.86
2 499 162.50 439 263.00 559 062.00 – 59 899.50 – 119 799.00 0.88 0.79
3 748 743.75 698 827.50 838 593.00 – 49 916.25 – 139 765.50 0.93 0.83
4 998 325.00 998 325.00 1 197 990.00 0 – 199 665.00 1 0.83
5 1 247 906.25 1 297 822.50 1 597 320.00 49 916.25 – 299 497.50 1.04 0.81

Table 3. EVM Computation for different components
3.4.1 Training Dataset (Quarter 1-5)
Quarter 
(q)

EV (Rs.) AC (Rs.)

1 239 598.00 279 531.00
2 439 263.00 559 062.00
3 698 827.50 838 593.00
4 998 325.00 1 197 

990.00
5 1 297 822.50 1 597 

320.00
6 80 % 100 %

Table 3. Training dataset for quarter 1 to quarter 5

3.4.2 Model Specification
Linear Regression (LR) Polynomial Regression (Degree 

2, PR)



3.4.3 Training Procedure & Validation

Step Description
1. Fit Linear Models • LR_EV → fit to for q = 1…5 to get .• 

LR_AC → fit to to get .
2. Fit Polynomial 
Models (degree 2)

• Create polynomial features for q = 1…5: .• 
Fit PR_EV on to get .• Fit PR_AC likewise.

3. Cross-Validation 
[Leave-One-Out 
Cross-Validation 
(LOOCV)]

• For each i in {1…5}, train on quarters Q ≠ 
i, predict Q = i. Compute RMSE on EV and 
AC. Compute R². Compare LR vs. PR.

3.5 Forecasting & Evaluation (Quarters 6–8)
Earned Value (EV) and Actual Cost (AC) based on the quarter 
index. For each future quarter, Planned Value (PV) is computed 
as qf × the quarterly PV, after which predicted EV and AC drive 
calculation of Schedule Variance (SV), Cost Variance (CV), 
Schedule Performance Index (SPI), and Cost Performance 
Index (CPI). These forecasts are then compared against the 
simulated “true” EV and AC values to quantify prediction 
errors. We assess accuracy using Root Mean Squared Error 
(RMSE) and Mean Absolute Percentage Error (MAPE) for 
both EV and AC, and average R² scores from leave-one-out 
cross-validation, selecting the model that minimises RMSE and 
maximises R² for reliable decision support.

Table 4: EVM Evaluation and Forecasted Data for 
Quarters 6,7 & 8 (output from Python code)

3.5.1 Forecast Error Metrics
In the Forecasting & Evaluation phase (Quarters 6–8), the 
trained Linear Forecast Error Metrics table quantifies how well 
each regression model predicts future EVM parameters by 
comparing predicted and actual EV and AC values for Quarters 
6–8. We utilise Root Mean Squared Error (RMSE) to quantify 
the typical size of the prediction errors in rupees, and Mean 
Absolute Percentage Error (MAPE) to express these errors as a 
percentage of actual values. Lower RMSE and MAPE indicate 
more accurate and reliable forecasting, guiding the selection of 
the best model for project decision-making.

Table 5: Forecasted Error Metrics for Linear and 
Polynomial Regression (output from Python code)

3.6 Model Fit Evaluation: Linear vs. Polynomial R²
R² tells us how much of the ups and downs in EV or AC our 
model actually “gets.” Our Linear Regression already explains 
over 99 % of that motion with a simple straight-line trend—
impressive for just five data points. The Polynomial fit squeezes 
out a tiny extra bit of variance (≈ 99.95 %) by curving to match 
every twist, but that can mean it’s memorising noise. Balancing 
solid R² with real-world reliability, the linear model wins: it’s 
nearly as explanatory without overfitting.

Table 6:Model fit evaluation for R² (output from Python 
code)

4. DISCUSSION
This study focuses on blending the discipline of Earned Value 
Management with simple machine-learning models to give 
rural building projects, where data can be hard to come by, a 
practical, easy-to-understand forecasting tool. Beginning with a 
detailed simulated BOQ (BAC = Rs. 1,996,650), we generated 
quarterly Planned Value (PV), Earned Value (EV), and Actual 
Cost (AC) figures that remain traceable to individual work 
items, ensuring every forecast ties back to real scope and 
budget.

Using Quarters 1–5 as training data, we compared Linear 
Regression (LR) and second-degree Polynomial Regression 
(PR) models for both EV and AC. Leave-One-Out Cross-
Validation demonstrated LR’s superior generalisation: LOOCV 
RMSE for EV and AC remained under 3% and 6% of their 
respective budgets, whereas PR exhibited overfitting with 
markedly higher error. This quantifiable evidence underscores 
that performance trends approximate linear behaviour within 
the limited temporal samples typical of rural projects, and 
adding polynomial terms yields diminishing returns.

Forecasts for Quarters 6–8 reaffirmed LR’s practical utility. 
Predicted Schedule Performance Indices (SPI) consistently 
exceeded 1.0, suggesting that hypothetical mid-project 
interventions could sustainably accelerate progress, while Cost 
Performance Indices (CPI) hovered around 0.82, flagging a 
projected 18 % cumulative budget overrun. Mean Absolute 
Percentage Errors (MAPE) for EV and AC predictions were 
approximately 2.7% and 5.2%, respectively, confirming LR’s 
accuracy in near-term forecasting.

The Linear Regression approach relies on the assumption of 
steady-state progress—i.e., that work and spending unfold at a 
relatively uniform quarterly pace—which may not hold when 
scope changes or unexpected disruptions occur; in such cases, 
piecewise regression or time-series models could better capture 
shifting trends. Quarterly summaries can overlook the ups and 
downs that happen week to week—or even day to day—in how 
much work is really getting done and what it actually costs. 
By digging into more frequent updates—say, monthly figures 
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or metrics tied to individual tasks—we’d capture those ebbs 
and flows and deliver forecasts that feel a lot closer to reality. 
Finally, although our simulation validates the methodological 
framework, its true robustness can only be confirmed through 
real-world application: deploying this EVM-ML integration on 
actual rural construction projects will test its resilience against 
environmental, logistical, and socio-economic uncertainties.

By grounding our machine-learning forecasts in a detailed 
BOQ-based EVM framework, we’ve built a clear and reliable 
decision-support tool. It lets rural project teams see upcoming 
schedule or budget hiccups well in advance, so they can take 
smart, timely actions to keep things on track.

5. CONCLUSION
By combining a realistic, BOQ-based EVM baseline with 
straightforward machine learning, we’ve crafted a forecasting 
tool that’s both powerful and practical for data-lean rural 
builds. Using just five quarters of “earned value” and “actual 
cost” data, our Leave-One-Out Cross-Validation showed Linear 
Regression could explain over 99 % of the variance and predict 
within 6 % of actuals, outperforming a more flexible polynomial 
fit that risked overfitting. When we rolled those models forward 
into the final quarters, the results were clear: the project could 
stay on or ahead of schedule (SPI > 1.0) but would likely run 
about 18 % over budget (CPI ≈ 0.82). Best of all, this method 
leans on existing quarterly EV/AC reports and a detailed BOQ, 
so rural teams can start forecasting tomorrow without heavy 
new data collection. Adding monthly or task-level updates and 
validating on live sites will only sharpen its accuracy, but even 
now, this EVM-ML pairing gives managers a reliable heads-up 
on schedule and cost risks, turning rearview-mirror reporting 
into genuine foresight.
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