
1. INTRODUCTION
An object is said to be recursive if it particularly 
consists of or is defined in terms of itself. It also 
refers to several related concepts in computer 
science and mathematics, where one or more 
functions of an integer’s variable are defined 
by giving initial values and by giving the value 
for larger integers in terms of smaller ones. In 
recursion, a function ∞ either calls itself directly 
or calls a function that in turn calls the original 
function ∞ , then the function ∞ is called a 
recursive function. The power of recursion lies 
evidently in the possibility of defining an infinite 
set of objects by a finite statement. In the same 
manner, an infinite number of computations can 
be described by a finite recursive program, even 
if this program contains no explicit repetitions. 
Recursive algorithms however are primarily 
appropriate when the problem to be solved or the 
functions to be computed, or data structure to be 
processed are already defined in recursive terms.

Recursive algorithms are particularly appropriate 
when the underlying problem or the data to be 
treated are defined in recursive terms. This 
does not mean, however, that small recursive 
definitions guarantee that a recursive algorithm 
is the best way to solve the problem. In fact, the 
explanation of the concept of recursive algorithm 
by such inappropriate examples has been a chief 
cause of creating widespread apprehension 
and antipathy towards the use of recursion in 
programming, and of equating recursion with 
inefficiency. This happens in addition to the 
fact that the widespread programming language 
such as FORTRAN forbids the recursive use 
of subroutines, thus preventing the invention 
of recursive solutions even when they are 
appropriate. 

Recursion compared to iteration 
Recursion is an alternation form of program 
control. It is essentially repetition with a loops 
are used. When a loop body could be specified. 
The repetition of the loop body is controlled by 
the loop control structure.

In recursion, the method itself is called repeatedly. 
A selection statement must be used to control 
whether to call the method recursively or not. 
Recursion bears substantial overhead each time. 
The program calls a method; the system must 
assign space for all the methods local variables 
and parameters. This can consume considerable 
memory and requires extra time to manage 
the additional space. One of the bad aspects of 
recursion is that it requires too much memory 
space and takes much time to compute a solution.

Tower of Hanoi an example of recursion
This is a mathematical puzzle which consists of 
three towers (pegs) and more.

Properties
A recursive function can go infinite like a loop. 
To avoid infinite running of recursive function, 
there are two properties that a recursive function 
must have:-

a: Base criteria, which means there must be at 
least one criteria or condition, such that, when 
this condition is met the function stops calling 
itself recursively.

b: Progressive approach; here the recursive calls 
should progress in such a way that each time a 
recursive call is made it comes closer to the base 
criteria.
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Recursive Relations
a. The Fibonacci sequence is given by the equations.

fo=  1
f1   =  1
fn+1= fn+ fn- 1 

b. When differential equations are to be solved numerically, 
recursion relations such as;

Arise where fa vector of real numbers is in general.

c. When linear differential equations are solved by series, 
recursion relations for the coefficients of the powers of the 
independent variables arise.

2. LITERATURE REVIEW
2.1 Body of Knowledge
The systematic study of recursion began in the 1920’s when 
mathematical logic began to treat questions of definability, 
computability, and decidability. An important role is played 
by primitive recursive functions. Primitive recursive functions 
are integer functions of integers built up from addition and 
multiplication of integers, and previously defined primitive 
recursive functions by the primitive recursion scheme.

Here, g and h are primitive recursive functions of k=1 and k+1 
arguments, respectively. As an example, we define n!, where 
n is positive integer, by n! = f (n) where f (0) = 1 and f (n+1) 
= (n+1). f (n). So in this case g is a function of 0 arguments, 
namely the constant 1, and h (u,v) = (v+1) u.

All the common functions of number theory are primitive 
recursive. Moreover, many important function countable 
domains other than the integers correspond to primitive 
recursive functions when one chose a specific enumeration for 
the domain.

Primitive recursive functions are included in general recursive 
functions. The definition of general recursive function is like 
that given above for primitive recursive functions, except that 
the relations are replaced by an arbitrary finite collection of 
equations relating the values f for different arguments, and the 
function is considered  defined if and only if a unique value 
of f(x1,… xk ) can be deduced from the equation for each 
k-tuplet (x1,…kk ).  Naturally, if someone gives you an arbitrary 
collection of such relations, you may not be able to determine 
whether you have a general recursive function. This difficulty 
is unavoidable. There is no way to give a definition scheme 
that is always guaranteed to give a function but which will 
give all computable functions. This fact is itself expressed in 
the terminology of recursive function theory by the statement 
that the set of computable functions is recursively enumerable 
but not recursive. The famous example of a general recursive 

function that is primitive recursive is the Ackermann functions 
defined by the equations.

A (0, n,p) = n + p, A (1,0,p) = 0
A (m+z, 0, p) = 1
and
A (m + 1,   n + 1, p) = A (m + 1, n, p), P)

2.2 Related Literature
[1] Has some discussion of the implementation of recursion 
in LISP, and [2] discussed the implementation of recursion in 
Algol. [3] discussed when to use recursion and when to use 
iteration. [4] Has a thorough treatment of subclasses of general 
recursive functions. The standard reference on recursive 
function theory was written by [5], who gave a more elementary 
treatment in a later book (1967). Two aspects of recursion are 
current research topics in Computer Science now unlike before 
various programming languages favor recursion in solving 
problems especially some object oriented languages. That is the 
notion of recursive program being extended in various ways, 
and methods implementing these extensions by compilers and 
interpreters [6]. Also, the formal properties of recursive 
programs are still a subject of study in mathematical theory of 
computation.

3. METHODS AND PROCEDURES
Many programming languages implement recursion by meaning 
of stacks. Generally, whenever a function (caller) calls another 
function (caller) or itself as caller, the caller function transfers 
execution control to the caller. This transfer process may also 
involve some data to be passed from the caller to the caller. 
This implies, the caller function has to suspend its execution 
temporarily and resume later when the execution control returns 
from the caller function. Here, the caller function needs to start 
exactly from the point of execution where it puts itself on hold. 
It also needs the exact same data values it was working on. For 
this purposes, an activation record (or stack frame), created for 
the caller function. This activation record keeps the information 
about local variables, formal parameters, return address and all 
information passed to the caller function.

Figure 1: Recursive function

Recursive Procedures
In programming, it is frequently convenient to have a procedure 
use itself as a sub- procedure. If the procedure does this, it is 
called recursive. Recursive procedures are particularly natural 
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in dealing with symbolic expression because the structure of 
the programs often matches the structure of data. As far as 
programming languages are concerned, recursive procedures 
are quite natural, it requires a special statement in the definition 
of the language to forbid them. 

However, implementing them requires that a special kind of 
object code be compiled, and early programming languages like 
FORTRAN do not allow them. The problem is the variables in 
the program correspond to location in the machines and when 
the program is called by itself; it will use the same locations, 
overwriting their previous contents. Therefore, recursive 
programs use a data structure called a stack; to store the contents 
of registers that must be saved. This storage can be done by the 
calling routine before it enters the sub-routine before it uses the 
registers, the latter being more common.

After the registers have been saved on the stack, the index into 
the stack is increased by the number of registers stored, so that 
subsequent saving on the stack will use fresh registers. When 
the subroutine exists, the contents of the saved registers are 
restored from the stack to their previous values, and the stack 
pointer is reduced by the amount it was previously increased. 
This is done by the caller or by the subroutine, according to 
whether the caller or subroutine did the original storing. An 
alternative technique of to use the stack for all temporary 
registers.

Implementation and Analysis
There are examples to show the application of recursion or 
recursive programs. The attractive graphic pattern shown 
below consists of the super position of five curves. These 
curves follow a regular pattern and suggest that they might be 
drawn by a plotter under control of a computer. The goal here is 
to discover the recursion schema, according to which plotting 
program might be constructed. Inspection reveals that three of 
the super imposed curves have the shapes shown below fig. 
2, one shall denote them by H1, H2 and H3. The figures show 
that Hi + 1 is obtained by the composition of four instances of 
Hi of half size and appropriate rotation and by typing together 
the four His by three connecting lines. Notice that Hi may 
be considered as consisting of four instances of an empty H0 
connected by three straight lines. Hi is called the Hibert curve 
of order i after its inventor.

Figure 2: Composition of three super curves

4. CONCLUSION
This work has shown us the programming concepts of the 
allowing modules, functions as well as procedures and 

subroutines to call themselves. Originally, many programmers 
did not see the usefulness of using recursive programs because 
of their sluggishness and what have you. Many have argued 
that iteration could accomplish the same task recursion does 
but there is still a difference between them. One reason is that 
recursion makes a program more readable and its efficiency 
could be more reliable than iteration. On the other hand, we can 
use the number of iterations to count the time complexity. One 
of the disadvantages of recursion is the need for large memory 
capacity, but this is readily available as one has many storage 
systems that one can back up to, for inexhaustibly memory 
space.  Also, the technology of expanded and extended and 
extended memory management system is an added advantages. 
It should be clear that most object oriented programming 
languages are able to support recursion, with the use of 
functions.
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