
1. INTRODUCTION
An object is said to be recursive if it particularly
consists of or is defined in terms of itself. It also
refers to several related concepts in computer
science and mathematics, where one or more
functions of an integer’s variable are defined
by giving initial values and by giving the value
for larger integers in terms of smaller ones. In
recursion, a function ∞ either calls itself directly
or calls a function that in turn calls the original
function ∞ , then the function ∞ is called a
recursive function. The power of recursion lies
evidently in the possibility of defining an infinite
set of objects by a finite statement. In the same
manner, an infinite number of computations can
be described by a finite recursive program, even
if this program contains no explicit repetitions.
Recursive algorithms however are primarily
appropriate when the problem to be solved or the
functions to be computed, or data structure to be
processed are already defined in recursive terms.

Recursive algorithms are particularly appropriate
when the underlying problem or the data to be
treated are defined in recursive terms. This
does not mean, however, that small recursive
definitions guarantee that a recursive algorithm
is the best way to solve the problem. In fact, the
explanation of the concept of recursive algorithm
by such inappropriate examples has been a chief
cause of creating widespread apprehension
and antipathy towards the use of recursion in
programming, and of equating recursion with
inefficiency. This happens in addition to the
fact that the widespread programming language
such as FORTRAN forbids the recursive use
of subroutines, thus preventing the invention
of recursive solutions even when they are
appropriate.

Recursion compared to iteration
Recursion is an alternation form of program
control. It is essentially repetition with a loops
are used. When a loop body could be specified.
The repetition of the loop body is controlled by
the loop control structure.

In recursion, the method itself is called repeatedly.
A selection statement must be used to control
whether to call the method recursively or not.
Recursion bears substantial overhead each time.
The program calls a method; the system must
assign space for all the methods local variables
and parameters. This can consume considerable
memory and requires extra time to manage
the additional space. One of the bad aspects of
recursion is that it requires too much memory
space and takes much time to compute a solution.

Tower of Hanoi an example of recursion
This is a mathematical puzzle which consists of
three towers (pegs) and more.

Properties
A recursive function can go infinite like a loop.
To avoid infinite running of recursive function,
there are two properties that a recursive function
must have:-

a: Base criteria, which means there must be at
least one criteria or condition, such that, when
this condition is met the function stops calling
itself recursively.

b: Progressive approach; here the recursive calls
should progress in such a way that each time a
recursive call is made it comes closer to the base
criteria.

Copyright© 2018, IEJSE. This open-access article is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits
Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) under the Attribution-NonCommercial terms.

International Educational Journal of Science & Engineering [IEJSE] | 01

E-ISSN No : 2581-6195 | Volume : 1 | Issue : 5 | December 2018Computer Science

Research Paper

RECURSIONS, A PROGRAMMING CONCEPTS THAT
ALLOWS FUNCTIONS AND MODULES TO CALL ITSELF:
DESIGN, IMPLEMENTATION AND ANALYSIS.

ABSTRACT

The objective of this work is to look at the features of these languages that allow itself to be called.
One want to look at a function ∞ on how it either calls itself directly or calls a function that in turn
calls the origin function . This function is called recursive function or module. This work would look
at its properties, implementation, analysis and complexity. The result of all these features would be
based on chosen examples of recursion.

KEYWORDS: Function, Recursion, Modules, Analysis

Amanze, B.C.1, Onukwugha.C. G.2

HOW TO CITE THIS
ARTICLE:

Amanze, B.C.,
Onukwugha .C.

G.(2018). Recursions,
a Programming

Concepts that Allows
Functions and Modules

to Call itself: Design,
Implementation

and Analysis.
 , International

Educational Journal
of Science and

Engineering (IEJSE),
Vol: 1, Issue: 5, 01-03

1Department of
Computer Science,
Faculty of Science,

Imo State University,
Owerri

2Department of
computer Science,
School of Science

Federal University of
Technology, Owerri

Recursive Relations
a. The Fibonacci sequence is given by the equations.

fo= 1
f1 = 1
fn+1= fn+ fn- 1

b. When differential equations are to be solved numerically,
recursion relations such as;

Arise where fa vector of real numbers is in general.

c. When linear differential equations are solved by series,
recursion relations for the coefficients of the powers of the
independent variables arise.

2. LITERATURE REVIEW
2.1 Body of Knowledge
The systematic study of recursion began in the 1920’s when
mathematical logic began to treat questions of definability,
computability, and decidability. An important role is played
by primitive recursive functions. Primitive recursive functions
are integer functions of integers built up from addition and
multiplication of integers, and previously defined primitive
recursive functions by the primitive recursion scheme.

Here, g and h are primitive recursive functions of k=1 and k+1
arguments, respectively. As an example, we define n!, where
n is positive integer, by n! = f (n) where f (0) = 1 and f (n+1)
= (n+1). f (n). So in this case g is a function of 0 arguments,
namely the constant 1, and h (u,v) = (v+1) u.

All the common functions of number theory are primitive
recursive. Moreover, many important function countable
domains other than the integers correspond to primitive
recursive functions when one chose a specific enumeration for
the domain.

Primitive recursive functions are included in general recursive
functions. The definition of general recursive function is like
that given above for primitive recursive functions, except that
the relations are replaced by an arbitrary finite collection of
equations relating the values f for different arguments, and the
function is considered defined if and only if a unique value
of f(x1,… xk) can be deduced from the equation for each
k-tuplet (x1,…kk). Naturally, if someone gives you an arbitrary
collection of such relations, you may not be able to determine
whether you have a general recursive function. This difficulty
is unavoidable. There is no way to give a definition scheme
that is always guaranteed to give a function but which will
give all computable functions. This fact is itself expressed in
the terminology of recursive function theory by the statement
that the set of computable functions is recursively enumerable
but not recursive. The famous example of a general recursive

function that is primitive recursive is the Ackermann functions
defined by the equations.

A (0, n,p) = n + p, A (1,0,p) = 0
A (m+z, 0, p) = 1
and
A (m + 1, n + 1, p) = A (m + 1, n, p), P)

2.2 Related Literature
[1] Has some discussion of the implementation of recursion
in LISP, and [2] discussed the implementation of recursion in
Algol. [3] discussed when to use recursion and when to use
iteration. [4] Has a thorough treatment of subclasses of general
recursive functions. The standard reference on recursive
function theory was written by [5], who gave a more elementary
treatment in a later book (1967). Two aspects of recursion are
current research topics in Computer Science now unlike before
various programming languages favor recursion in solving
problems especially some object oriented languages. That is the
notion of recursive program being extended in various ways,
and methods implementing these extensions by compilers and
interpreters [6]. Also, the formal properties of recursive
programs are still a subject of study in mathematical theory of
computation.

3. METHODS AND PROCEDURES
Many programming languages implement recursion by meaning
of stacks. Generally, whenever a function (caller) calls another
function (caller) or itself as caller, the caller function transfers
execution control to the caller. This transfer process may also
involve some data to be passed from the caller to the caller.
This implies, the caller function has to suspend its execution
temporarily and resume later when the execution control returns
from the caller function. Here, the caller function needs to start
exactly from the point of execution where it puts itself on hold.
It also needs the exact same data values it was working on. For
this purposes, an activation record (or stack frame), created for
the caller function. This activation record keeps the information
about local variables, formal parameters, return address and all
information passed to the caller function.

Figure 1: Recursive function

Recursive Procedures
In programming, it is frequently convenient to have a procedure
use itself as a sub- procedure. If the procedure does this, it is
called recursive. Recursive procedures are particularly natural

02 | International Educational Journal of Science & Engineering [IEJSE]

E-ISSN No : 2581-6195 | Volume : 1 | Issue : 5 | December 2018

in dealing with symbolic expression because the structure of
the programs often matches the structure of data. As far as
programming languages are concerned, recursive procedures
are quite natural, it requires a special statement in the definition
of the language to forbid them.

However, implementing them requires that a special kind of
object code be compiled, and early programming languages like
FORTRAN do not allow them. The problem is the variables in
the program correspond to location in the machines and when
the program is called by itself; it will use the same locations,
overwriting their previous contents. Therefore, recursive
programs use a data structure called a stack; to store the contents
of registers that must be saved. This storage can be done by the
calling routine before it enters the sub-routine before it uses the
registers, the latter being more common.

After the registers have been saved on the stack, the index into
the stack is increased by the number of registers stored, so that
subsequent saving on the stack will use fresh registers. When
the subroutine exists, the contents of the saved registers are
restored from the stack to their previous values, and the stack
pointer is reduced by the amount it was previously increased.
This is done by the caller or by the subroutine, according to
whether the caller or subroutine did the original storing. An
alternative technique of to use the stack for all temporary
registers.

Implementation and Analysis
There are examples to show the application of recursion or
recursive programs. The attractive graphic pattern shown
below consists of the super position of five curves. These
curves follow a regular pattern and suggest that they might be
drawn by a plotter under control of a computer. The goal here is
to discover the recursion schema, according to which plotting
program might be constructed. Inspection reveals that three of
the super imposed curves have the shapes shown below fig.
2, one shall denote them by H1, H2 and H3. The figures show
that Hi + 1 is obtained by the composition of four instances of
Hi of half size and appropriate rotation and by typing together
the four His by three connecting lines. Notice that Hi may
be considered as consisting of four instances of an empty H0
connected by three straight lines. Hi is called the Hibert curve
of order i after its inventor.

Figure 2: Composition of three super curves

4. CONCLUSION
This work has shown us the programming concepts of the
allowing modules, functions as well as procedures and

subroutines to call themselves. Originally, many programmers
did not see the usefulness of using recursive programs because
of their sluggishness and what have you. Many have argued
that iteration could accomplish the same task recursion does
but there is still a difference between them. One reason is that
recursion makes a program more readable and its efficiency
could be more reliable than iteration. On the other hand, we can
use the number of iterations to count the time complexity. One
of the disadvantages of recursion is the need for large memory
capacity, but this is readily available as one has many storage
systems that one can back up to, for inexhaustibly memory
space. Also, the technology of expanded and extended and
extended memory management system is an added advantages.
It should be clear that most object oriented programming
languages are able to support recursion, with the use of
functions.

5. REFERENCES
1. McCarthy, J. (2002). “Actions and other events in situation

calculus”. Proceedings KR-2002, 615 -628
2. B. Randell and C.J. Russel, the implementations of Algol 60,

Academic Press, 1964
3. Wirth, N. (1976). Algorithm + Data Structures = Programs.

Englewood’s Cliff, N.J. Prentice-Hall.
4. Peter, R. (1967). “Recursive functions”, Academic Press New

York.
5. Kleene, S.C. (1967). “Mathematical Logic”, Wiley and Sons

Press, New York.
6. Daniel Y. Liang (2011). Introduction Java Programming, Pearson

Books N.J. U.S.A.
7. Deitel, P.J., & Deitel, H.M. (2009). Internet and World wide web-

How to program, Pearson books N.J., U.S.A.
8. Deordney, A.K. (1993). The Tuning Omnibus, W.H. Freeman

books New York, 2nd edition.
9. Manna, Z. (2000). Mathematic theory of computation Mc

Grawhill, New York.
10. Mc Vite, D.G. & Wilson, L.B. (1971). The stable marriage

problem, comm. A.C.M 14, N0. 7, 486-92.
11. Roberts, E.S. (1986). Thinking recursively, John Wiley and Sons

New York.

International Educational Journal of Science & Engineering [IEJSE] | 03

E-ISSN No : 2581-6195 | Volume : 1 | Issue : 5 | December 2018

