
1. INTRODUCTION
Diabetes Mellitus is a disease that often causes 
difficulties to maintain the patient without blood 
glucose concentrations at high and low levels. The 
problem is that it induces secondary complications 
or hypoglycaemic events respectively. Therefore, 
a real need exists for a glucose monitoring system 
that can give detailed and accurate information 
on glucose patterns through the overall day. 
A number of alternative strategies are being 
under development to allow pain free glucose 
monitoring. Non-invasive glucose monitoring 
is clearly the most attractive approach for 
patients with T1DM, allowing more frequent 
measurements without any pain or sensation. 
Such a system would also lead to a reduction 
in the number of undiscovered hypoglycaemic 
events as well as in the number of episodes and 
length of hyperglycaemic periods. However, the 
main difficulties with these techniques are the 
limited resolution and the insufficient precision. 
In this work, the results reported in [1] about 
the use of a biosensor based on impedance 
spectroscopy and their published experimental 
data are reproduced. The sensor used in their 
proofs is the size of a wristwatch and holds an 
open resonant circuit coupled to the skin and a 
circuit performing an impedance measurement. 
Changes in the glucose concentrations were 
monitored by varying the frequency in the radio 
band over a range, optimised to measure the 
impact of glucose on the impedance pattern. In 

most cases, the experiments presented a good 
correlation between changes in blood glucose and 
the sensor recordings. However, they detected 
that sudden relocation of the sensor, variations in 
temperature, etc. were the most common causes 
of erroneous measurements.  Therefore, based 
on the good results presented in [2], in this work 
is proposed to develop a fault diagnosis and 
identification (FDI) system based on the Discrete 
Wavelet Transform (DWT). It represents a 
valuable tool applied to a faulty glycaemia 
measurement as a signal to decompose. The 
DWT can be implemented as a low-pass and 
high-pass multi-resolution filter of the signal. 
These filters are specifically designed and are 
function of the selected wavelet family as well 
as of its corresponding scaling function. Here it 
is used the Daubechies wavelet family.  Another 
largely studied problem on this discipline is 
the use of several control strategies acting as 
artificial pancreas for deciding the correct insulin 
dosage according to the glycaemia level. Then, if 
the FDI is properly integrated with the Predictive 
functional controller (PFC), it would be turned 
as a fault tolerant control (FTC).  In a previous 
work [3], the PFC was successfully tested but 
assuming invasive subcutaneous (SC) tissue 
and intravenous (IV) glycaemia measurement 
and SC and IV infusion of insulin. In order to 
demonstrate the potentiality of the methodology 
used here several simulation results are presented 
by employing the same model structure as used 
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in [4].

2. THE INTERACTION MODEL: GLUCOSE-INSULIN-
GLUCAGON 
The mathematical model used in this work is based on a 
compartmental one analogous to that explained at [3]. It 
includes a single glucose compartment representing the extra 
cellular fluids, three insulin compartments (liver and portal 
plasma insulin, plasma insulin, and insulin in the interstitial 
fluids), and a glucagon compartment. The considered unit 
processes are net hepatic glucose balance, renal excretion of 
glucose, and insulin-independent glucose utilization. However, 
some model parameters which characterize different diabetic 
levels were adjusted based on biological data obtained through 
experiments with rats [5]. This model allows simulating the 
dynamic effect of exogenous glucose and insulin dosage under 
different specific tests for healthy or diabetic patients. A second 
order transfer function is included in order to emulate the path 
between oral glucose and blood glucose. The model equations 
used in the simulations are:

Where NHGB Net hepatic glucose balance; x1: glucose in 
plasma and extracelular fluids(mmol); u1p: pancreatic stored 
insulin (µU /kg); u2p: Glucagon, (µU /kg); u11: Plasma 
insulin, (µU/kg); u12: Liver insulin, (µU /kg); u13: Interstitial 
insulin, (µU /kg); w and F1 to F7 : are nonlinear monotonic 
functions; Ix e Iu: external glucose, (mg/kg min) and insulin 
(µU/kg) respectively; mij, Concentration of insulin U ml; hij 
y kij: constants; k02 depends of  x1. In Fig. 1 are shown the 
model prediction and the real data of an adult rat belonging of a 
control group (left) and from the rat injected with 40 micromole 
of sodium fluoride (NaFl)/100 g of body weight, 15 minutes 
before the administration of glucose  (Fig. 1 right). The NaFl 
produces a temporal T1DM and enables recording information 
about the dynamic response when 0.5g of glucose in a solution 
of 0,55 moles/l  is given intraperitoneally to rats of 200-220g 
of body weight. The blood samples were obtained before and 
after 15, 30, 45, 60, 90, 120 y 240 minutes of the glucose 
administration. As can be seen the model can follow properly 
the real behavior of blood glucose. Obviously the experimental 
data obtained with rats were taken into account because of the 
similarity with the human behavior. Another model validation 
results were presented in [3].

Figure 1: validation model with experimental data (left) 
of a healthy rat from the control group and (right) a rat 

injected with NaFl (temporary diabetic)

3. THE BIOSENSOR FOR BLOOD GLUCOSE 
CONCENTRATION
In this section a brief description of the sensor used in [1] is 
included as well as the reconstruction of the experimental 
measurements reported in that work. The sensor uses 
electromagnetic waves in the selected frequency band that 
interacts with the skin and underlying tissue, to be able to 
monitor its electrical properties. The impedance of the sensor at 
a given resonance frequency depends on the impedance changes 
within the human skin and underlying tissue. It is shown that 
the resonance frequency and the minimum of the impedance 
modulus |Z| change with different blood glucose concentrations. 
Based on the several human experimental results presented in 
[1] it was concluded that the sensor presented great potentiality 
even though some aspects needed to be improved. For example, 
in some experiments a shift between the sensor signal and the 
real value of the blood glucose concentration was reported. 
Accounting this information, the reconstructed sensor signals 
will be displayed in section 6, including noise and the abrupt 
shift on the measurement of blood glucose concentration. It can 
be done thanks to the use of the model described before which 
allows performs simulations for evaluating the FDI integrated 
with tolerant PFC behaviour. 

4. FAULT DETECTION AND IDENTIFICATION 
SYSTEM BASED ON WAVELET DECOMPOSITION
In this section the FDI based on wavelets decomposition is 
adopted accounting the successful application presented in 
[2]. According to the faulty behaviour explained in section 3 
it is clear that if a FDI is available and able to detect the quick 
changes in the measured signal, it will be useful for accounting 
with accurate measurements provided by  the non invasive 
sensor. Another important reason is the fact that only if the 
correct glycaemia value is available the insulin dosage will be 
properly administrated. It is found that the DWT is a valuable 
tool applied to different signals for detecting changes of high 
frequency. The signal can be decomposed in low and high-pass 
multiresolution filters. These filters are defined as functions of 
a selected wavelet family as well as of its corresponding scaling 
function (more details can be found in [6]). In the wavelet 
transform, the basis functions are little waves called wavelets. 
They are able to adjust their scale according to the nature of 
the signal features. The low and high-pass filtering versions are 
called approximation signal A and detail signal D, respectively. 
For the application considered here, the Daubechies wavelet 
family of second order was used and the decomposition scale 
was selected to be equal to one. In section 6 [Fig. 3 (right)] it 
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will be presented the wavelet detail decomposition of the non 
invasive sensor signal. 

5. FAULT TOLERANT PREDICTIVE FUNCTIONAL 
CONTROL (FTPFC)
The PFC technique is the third generation of a family of Model 
Algorithmic Control (MAC). PFC basically consists of four 
main elements such as a process dynamic model; a reference 
trajectory yr (n), a self-compensation of the predicted error and 
a specif structure for the manipulated variable.  The trajectory 
yr can be interpreted as the desired behaviour of the closed loop 
system. The future error between yr and the predicted output 
over the coincidence horizon [H1, H2] is estimated. A self 
compensation is done accounting the actual mismatch between 
real data and model output. The estimation of the future error at 
the coincidence horizon by specific kind of extrapolation, allows 
to improve the model prediction. In this case the relationship 
between insulin infusion (manipulated variable) and blood 
glucose (controlled variable) is named Gmi. Meanwhile Gdi 
refers to the relationship between exogenous glucose and blood 
glucose. 

In this work, the development of the control strategy includes 
the following steps: 1) implement the mathematical model of a 
patient with T1DM for doing the simulation of the faults in the 
blood glucose measurement,  using the non invasive biosensor; 
2) obtention of the internal (predictive) model by using basic 
identification techniques; 3) design the PFC accordingly 
and 4) perform the numerical experiments on closed-loop 
control for comparison purposes with and without the FDI 
integration. Calling the inputs of the manipulated variable u(n) 
and the perturbation d(n), the first order model response at the 
coincidence point (n+H) becomes

The parameters to be tuned for PFC are: coincidence point (H). 
Closed loop time response (TRBF) of the reference trajectory. 
The control zone is considered so TRBF is moving linearly 
between two extremes values recognized as TRBF _L (low) 
and TRBF _H (high). Transition zone [%] set the allowed zone 
for the controlled variable expressed as ± Delta% with respect 
to set point value, constraints to manipulated variable are also 
included by fixing maximum (Umax), minimum (Umin) and 
variations for it [(dU/dt)max]. In Table 1 are included the 
adopted parameters for the simulations shown in this work.

TRBF _L: 10 Umax: 1x10-4 Tmi: 4 H: 20
TRBF _H: 250 (dU/dt)max: 

2x10-4
Kdi: 6 H1: 20

Delta: 10 Kmi: -975x103 Tdi: 45 H2: 1000
Umin: 
-1.4x10-5

Ti: 25 Tmd: 12 Ts: 1

Table 1: Controller Parameters Setting

6. RESULTS AND DISCUSSION
Several tests have been done supported by the endocrine 
model. However, here only few of them are shown because of 
the space limitation. In the Fig. 2 can be observed the blood 
glucose time evolution when a sensor fault occurs at t=1000 
min. without FTPFC strategy. In this case the controller masks 
the fault and behaves quite similar as when a perturbation enters 
in the system producing a good rejection of it. The problem 
is that during 300 min. the real blood glucose moves towards 
to more dangerous glycaemia level. Another situation can be 
seen in Fig.3 (left) when the FTPFC is working. The real blood 
glucose is returned to its original and safety value because the 
measurement is compensated thanks to the FDI integration. 
In the Fig. 3 (right) it can be seen how the wavelet detail at 
level 1 can detect the moment when the sensor gives the wrong 
measurement. Negative deviations (peaks) correspond to 
positive shift in the sensor signal and vice versa. 

Figure 2: Sensor Fault without FTPFC

Figure 3: Sensor Fault with FTPFC (left) and Wavelet 
detail (right)

As can be seen, the high-frequency content of the wavelets 
results enough lower than that produced by the fault to be easily 
recognized as an abnormal event by the FDI. In addition the 
height of the peak is closely related with the magnitude of the 
shift measurement. This characteristic allows to do accurate 
correction of the signal to be accounted by the PFC. Therefore in 
the Fig. 4 (left) can be seen how the FTPFC delivers the correct 
insulin dosage.  Meanwhile, in Fig. 4 (right) the correct fault 
magnitude estimation, based on the DWT support, is shown 
This magnitude is used for doing the additive measurement 
compensation.
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Figure 4: Insulin dosage with and without FTPFC (left), 
magnitude fault estimation from Wavelet detail support 

(right)

7. CONCLUSIONS
According to the obtained results it can be concluded that for 
the reported faults that could present this kind of non invasive 
biosensors the FDI methodology offers a good alternative of 
measurement correction. It is important specially for preventing 
those problems where the glycaemia level is out of the healthy 
range. In particular is crucial when the controller works as a 
decision support maker for proper insulin dosage determination. 
It is considered that this work is the first one which applies 
FDI system for supporting fault tolerant predictive functional 
control applied to the endocrine system. The tests were done 
thanks to the valuable help of a well validated rigorous model.
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