
1. INTRODUCTION
In the last years, the data collected and processed 
know an exponential increase. Data Mining is 
a technique for extraction of knowledge in the 
massive data. Generally, the data mining methods 
are grouped into two families: the techniques 
of supervised learning and the technique of 
unsupervised learning. If we have a set of objects 
labeled and we know the possible classes we are 
talking about supervised learning. In the opposite 
case, it is unsupervised learning[1].

Clustering is one of the most unsupervised 
technique, concerned with the grouping of objects 
into clusters when their classes are not known in 
advance and the objects are not labeled [2, 3]. 
It’s expected that objects of a cluster must have 
great similarity than the objects of others cluster. 
Basically to examine the similarity between 
objects the distance measurement is used.

In the literature, there are many clustering 
algorithms. The classical clustering algorithms 
are classified as hierarchical and partitional 
techniques[4]. the k-means algorithm considered 
the most popular algorithms that can be used[2]. 
Clustering algorithms have been used in different 
areas such as image processing, demographic 
study, crime detection, medicine and biology[4,5].

Spectral clustering has become popular modern 
clustering algorithms. It is mostly used for 
finding Communities in a graph (grouping nodes 
in a graph into clusters) from the similarity 
matrix[6,7, 8].

The paper is organized as follows: Section 2 

describes the concept and process of spectral 
clustering. Section 3 presents different steps 
of our implementation. Section 4 presents the 
discussion of the results obtained. Finally, section 
5 concludes the paper.

2. SECTRAL CLUSTERING
Spectral Clustering attracted more and more 
attention because of its sounds and good 
clustering resultants based on graph theory [9,7]. 
It’s characterized by classification adapted to 
the search of the communities, even if it is not 
based on a probabilistic model but the spectral 
clustering has the advance to work on very large 
graphs[6].

Concerned with finding clusters in a set of 
graphs spectral clustering methods use the top 
eigenvectors of an affinity matrix, derived from 
similarities between data objects [2]. Each cluster 
delineated by its similarity which means that the 
objects.

The first step in spectral clustering is the create 
similarity graph with vertices are the data objects 
and edges are the affinities between data objects 
[10, 11]. 

This graph can be represented by an affinity 
matrix, where wij denotes the edge weight or 
affinity between vertices i and j. Creation of graph 
similarity is based on the concept of similarity 
sij>0 (inversely proportional to the distance).

The two mathematical objects used by spectral 
clustering are similarity graphs and graph 
Laplacians [6].
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2.1 Similarity graph 
There are cases where data are not originally structured in a 
graph. In this case, a similarity graph can be constructed from 
these data.

We consider a classic data table of size n*p, i.e. n observations 
x1,x2,…..,xn with xi  εRp and it has a similarity measure between 
each pair of objects xi, xj. One of the most frequent similarity 
measures is given by the sigmoid function[9].For such, let d(i,j) 
be the dissimilarity between object I and j from the dataset, for 
example,the Euclidean distance.Then, the weight matrix W of a 
similarity graph G can be calculated by making :

The parameter σ has a high impact on the groups obtained. 
Different strategies have been investigated to find its best value. 
The primary goal of clustering is to divide the data objects into 
several groups such that objects in the same group are similar 
and objects in various groups are dissimilar to each other.  The 
goal of constructing similarity graph is to model the local 
neighborhood relationships between the data objects. There are 
several popular constructions to transform a given set x1,...,xn of 
data objects with pairwise similarities sij or pairwise distances 
dij into a graph. The several popular similarity graphs used in 
spectral clustering are the €-neighborhood graph, K-nearest 
neighbor graphs, and fully connected graph.

The €-neighborhood graph, here we set a scale ε >0 and we 
connect all points vi, vj where sij>= ε (whose distance value are 
smaller than ε) the graph constructed is an unweighted graph.

K-nearest neighbor graphs, where the idea is to connect each 
vertices to its k nearest neighbors. However, this yields a 
directed graph since the k-nearest neighbors relationship is not 
symmetric. If we want to construct an undirected KNN graph 
we can chose between the mutual KNN graph, where there is 
an edge between two vertices if both points are among the K 
nearest neighbors of the other one, and the symmetric KNN 
graph, where there is an edge between two vertices if one point 
is among the k nearest neighbors of the other one.  In both 
cases edges constructed are weight by the similarity of their 
endpoints in order to form a directed graph.

The fully connected graph: Here we simply connect all vertices 
with positive similarity with eachother, and we weight all edges 
by sij. (The vertices vi ,vj are connected if i≠j and sij>0)  as well 
the graph created is dense.

2.2 Graph laplacians 
Laplacians matrices are the main objects for spectral clustering. 
In the following G is an undirected weighted graph,with 
weighted matrix W (size n*n), such that wij≥0. Let D is a 
diagonal matrix whose diagonal is (d1,......,dn)  with di is the 
valued degree of the node I in G i.e. di=∑_jwij=∑_jwji.

The two types of graph laplacians with their important 
properties are defined as the following[6]:
•	 The unormalized graph Laplacians 
The unormalized graph Laplacian is defined as:  L=D-W

Matrix L satisfies the following properties:

1.	 1- For every vector uεRn, we have 

2.	 L is symmetric and positive.
3.	 The smallest eigenvalue of L is 0, the corresponding 

eigenvector is the constant one vector 1.
4.	 L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 

≤ .... ≤ λn.

The unnormalized graph Laplacian and its eigenvalues and 
eigenvectors can be used to describe many properties of graphs. 
One example which will be important for spectral clustering 
number of connected components and the spectrum of L. 
The multiplicity of the value own 0 is equal to the number of 
connected components of G. The Vectors indicators of these 
connected components are of the eigenvectors for the value 
own 0.

The study of the Laplacian spectrum of the graph thus makes 
it possible to determine simply the numbers of connected 
components of this graph.

The unormalized graph laplacian is defined as:

3. APPROACH PROPOSED
The goal of our approach is the development and 
implementation of a data grouping process based on the 
spectral clustering algorithm and the igraph library [12]. The 
igraph library implements a good set of community detection 
algorithms, allowing researchers to easily apply them to data 
mining tasks[13]. This approach consists of five major steps; 
the first step named definition of data which can summarize by 
the collection of the data thus the description of these last, the 
second stage is the graphical representation of the data to be 
treated on the basis of the graph of similarity which one already 
mentioned. In the third step, we will present the different 
matrix representations of similarity graphs built in the previous 
part. The fourth step represents the application of the spectral 
clustering algorithm on the matrix obtained in the previous step 
in order to deduce the groups of our data. The fifth step is the 
interpretation of the results. In the following, we will describe 
these different stages with the examples.

3.1 Definition of data
The definition of data begins with the collection of all n 
individuals who make up our database. They can be noted: X1, 
X2 X3, ……..Xn. Individuals Xi may be heterogeneous. After 
the definition of n individuals, the next step is to define for each 
individual the whole of these components Xi = (x j)jε[1,p], a 
component xj of the given Xi is equivalent to an attribute in the 
relational model.

Example
We are interested in our simulation to a database of students 
of the Faculty of Sciences and Techniques of Errachidia where 
each student is described by a set of characteristics: CNE, 
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Name, Module stream, Section and the note. The student will 
be present by a vector with components.
Student = {CNE, Name, Module, stream, Note}

Attribute Description
CNE The national code of the student, in digital format
Name The name of student, in text format
Module The module study each module has its own code under 

forma XXX
Stream The student stream has two possible values {BCG, 

MIP}
Note Note of module, in numeric format 

Table1: Description of attributes

3.2 Graphic representation 
Spectral clustering algorithm consists of one significant step 
to construct a similarity matrix and the goal of constructing 
the similarity matrix is to model the local neighborhood 
relationships between the data vertexes. Consider we have a 
data set X = x1, ...,xN which we want to cluster into K clusters.  
To construct the affinity (or similarity) matrix S which measures 
the weights (or similarities) between all data points we can use 
the following formula:

sij = exp(- (xi-xj) /2σ2)    If i = j, else sii= 0

From a similarity matrix we will create the graph of similarity 
defines in the following manner G = (V, E) where V is the set of 
nodes of the graph and E the set of edges between the nodes of 
V. There are three types of graphs of similarity (which they are 
already cited), the graphs of dense similarity (fully connected), 
the neighborhood de-neighborhood graphs (ε-neighborhood) 
and the graphs of the k nearest neighbors (k-nearest neighbor).

Example 
Considering our student database which contains 20 
observations, our goal is the classification of this observation. 
This classification requires in the first place a pretreatment to 
find the optimal set of relevant attributes. We will use the field 
CNE to label the nodes of the graph, then he will be neglected 
in the calculations of the distances as well as the attribute name 
because they bear no reversal important for the classification of 
nodes. To calculate the distance matrix of our example we will 
use the Euclidean distance for the numerical attributes namely 
note. For non-numeric attributes, the distance is 0 if the values 
are equal and 1 otherwise.

From the table of similarity, we can easily construct the 
graphs of similarity; the following figures represent the graph 
similarity:
•	 Figure 1: the graph of similarity dense, where all the edges 

will be present except in the cases of boucle.
•	 Figure 2: shows the construction of ε-neighborhood graphs 

with different scale values.
•	 Figure 3: the influence of the parameter K on the generated 

k-nearest neighbor graphs.

Figure 1: Graph of dense similarity
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Figure 2: the construction of ε-neighborhood graphs with 
different scale values.

Figure 3:  K-nearest neighbor graphs.

The limits of graph of similarity dense are numerous; the 
presence of all the edges is not an important information, in 
the case dealt with the presence of the edges with the weight 
almost zero adds no value to the graph result, on the contrary, 
it increases the time of generation of the graph as well as its 
complexity.
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In the case of ε-neighborhood graphs, the ε parameter plays an 
important role in the quality of similarity graphs. The parameter 
K plays a crucial role in the results provided by the construction 
algorithm of k-nearest neighbor graphs. A higher value of K 
generated a higher number of links between the nodes, when 
a lower value of K risks of disappearing edges that carries 
information about the visualized data.

3.3 The matrix representation
Form the affinity matrix W we define D to be the diagonal 
matrix and construct the Laplacian matrix L, then obtains the 
eigenvectors and eigenvalues of L. Find x1, x2... xk, the k 
largest eigenvectors of L and form the matrix X= [x1, x2... xk] 
€Rnk by stacking the eigenvectors as columns. Construct the 
matrix Y from X by renormalizing each of X’s rows to have unit 
length. We treating each row of Y as a point in Rk, cluster them 
into k clusters using any clustering algorithm. Finally assign the 
original point Si to cluster j if only if row i of the matrix Y has 
assigned to cluster.

3.4 Results interpretation 
For the data classification of our database we will build the 
graph of similarity by ε-neighborhood graphs with scale values 
is 0.96 and the result of Spectral Clustering is the classification 
of the nodes in two clusters C1 and C2. C1 contains students 
from MIP stream and in C2 there are BCG stream students. 
The following figure represents the result of Spectral Clustering 
implement with igraph.  

Figure 4: the result of Spectral Clustering implement with 
igraph.

The choice of the similarity graph and the selection of the 
parameters of the different phases of the processes play an 
important role in the result obtained. The modification of any 
parameter can generate different results. 

4. CONCLUSIONS
In this paper, we presented clustering spectral as a method of 
classification of data modeled by graphs, in passing by the 
matrix representation of the graph of similarity and the spectral 
analysis of the matrices generated. We used a case study to see 
the behavior of algorithms from spectral clustering as well as 
the impact of the change of some parameters on the final results.
Spectral Clustering not only serves the purpose of detecting 
communities in a network, it can also enable us to identify 
classes whose delimitations are non-convex as long as we are 
able to define a relevant measure of similarity (or affinity) 
between individuals.
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